
PULL DOWN COMPLEXITY
WITH KUBRICK

PROGRAMMING LANGUAGE AND SYSTEM TO FACILITATE HUMAN DEVELOPERS
AND AUTOMATONS

Giancarlo Frison - gfrison.com

ABSTRACT
AI tools are now the horsepower of computer program-
ming. They are generally great for writing glue-code and
integration tasks, probably less than ideal for complex
problems on complicated programming settings. What
could be the reasons that prevent generators on full-scale
adoption?

I am implementing a declarative programming language
that facilitates the synergy between automatons and hu-
mans on software development by forcing AI tools to gen-
erate intuitive code and to allow human operators to un-
derstand what is in there. It is an attempt to lower the bar-
riers by simplifying the programming experience.

For giving you some reasoning, I will touch various aspects
that includes cognitive aspects of problem-solving applied
to programming and the role of AI tools such as LRMs on
software development. I will provide arguments for stat-
ing that the accidental complexity of the programming
system may worsening the performance of AI generators
as well as it affects human developers.

Started as a data programming language for pairing
database queries with programming controls, Kubrick
may evolve in an advance integrated programming envi-
ronmentwith the footprint of a Jupiter notebook and the im-
mediacy of a spreadsheet. It lets agents to focus on what
theywant to achievemaking easy things easily without ex-
pressivity losses.

To mitigate the lack of solution productivity in genera-
tors - the way that an optimizer generates deriving com-
binations of solutions from a set of given axioms - I ex-
tended the language for helping agents to cover combi-
natorial problems. Think of answer set programming (ASP)
but with an eye on integration and usability.

This is an ongoingproject thatwas the topic ofmyMaster’s
dissertation “Programming Language and System for Enhanc-
ing AI-Assisted Software Development” I defended last De-
cember 2025, and it summarized several insights I gath-
ered during my experience in the field. I just recently
started to open source it and I will gradually share it on
GitHub.

Giancarlo Frison

1

https://gfrison/kubrick/
https://www.sciencedirect.com/science/article/abs/pii/0010027788900315
https://github.com/gfrison/kubrick
https://gfrison.com

COGNITIVE ASPECTS OF PROGRAMMING
AI tools are everywhere. In every domain it is possible to
find features that can benefit of AI capabilities. If we ex-
clude certain high-risk sectors - nuclear plants, aviation
control - AI is already assisting human labour, and the pace
of adoption will certainly accelerate.

Language models were conceived for NLP tasks and
trained with all sort of available text, so it is quite natural to
think about their application in programming code gener-
ation. After all, programming is text-based for being writ-
ten and read like any other text. Is it then reasonable that
LRMs exhibits appreciable programming skills as they do
on generating phrases?

With AI Tools it is not so bizarre to ship live entire appli-
cations in hours rather than weeks, but their effectiveness
may fall short on accomplishing what prompters want
them to do. Complaints regarding GenAI performances
are summarized in:

• Problems with multi-step reasoning.
• Struggles with mutable states and side effects.
• Shallow code understanding.
• Fail to meet requirements.
• Generate complicated code.
• Despite same prompt, they generate different code.
• Despite different prompt, they generate the same code.

Building a program essentially means to face it from two
distinct sides: the problem domain and the solution do-
main. Understanding the problem to solve is themost im-
portant task, and if it is more or less difficult to grasp, it
is related to its essential complexity. On the other hand, the
complexity of the solution domain is referred to as acciden-
tal complexity, and it is introduced by the ecosystem neces-
sary to implement the solution.

“If I had an hour to solve a problem, I’d spend 55 minutes
thinking about the problemand 5minutes thinking about the
solution” - A. Einstein

While increasing the complexity of a system absorbs
more of the engineer’s working memory, it also in-
creases the perplexity an LRMs on solving the same
task. Perplexity measures how unexpected a token is
to the LRMs, and thatmeans that the accidental com-
plexity negatively impacts the generation of code,
with more chances of introducing bugs not only by
developers but also by automatons. Humans and the
artificial agents showa significant positive correlation
when faced with similar alienating settings.

The programming systemconsists of several substrates that
include libraries, tools, and external systems, and when it
increases the programming effort increases exponentially.
While the essential complexity isn’t negotiable, the acci-
dental one must be kept at the lower level possible.

Many difficulties automatons and developers shows on
generating code might be due to a common root: the ac-
cidental complexity carried by the programming system.
The intuition behind this project is to address this issue
from its foundations.

2

https://arxiv.org/abs/2508.18547
https://arxiv.org/abs/2508.18547

HOW TO REDUCE COMPLEXITY
Do you want to reduce accidental complexity and favor
agents onprogramming? Be inspiredbywhat teachers do
for preventing plagiarism through AI, and apply the oppo-
site strategies for making programming easier:

UNIFORM EXPERIENCE
From the point of programming experience, what is
daunting for agents - in terms of increasing perplexity, and
ultimately on increasing bugs - is the heterogeneity of the
ecosystem. Different paradigms for configuration, data ac-
cess, service orchestration, remote procedure calls, testing
and deployment. Each of those aspects requires specific
skills and knowledge that increases accidental complexity.
A proper programming environment should nullify those
frictions by providing a consistent an uniformway to inter-
act with it.

OPEN AUTHORSHIP
Software development often involves a hard separation
between programmers and users. I believe that accidental
complexity prevents final consumers to be empowered to
change the software applications. Are there already some
examples that allow that?

I think everybody has at least once used a spreadsheet ap-
plication. One thing that’s very clear to users is that the
spreadsheet does not have really a separate environment
for programming and for use. A spreadsheet can bemod-
ified at any time by modifying the data or the formulas it
contains.

Notebooks like Jupyter or Google Colab allow users to nat-
urally split problems into smaller pieces, solve them indi-
vidually with an immediate feedback. Those approaches
lower the accidental complexity and Kubrick aims to com-
bine both.

SELF-SUSTAINABILITY

Self-sustainability refers to the extent to which a sys-
tem’s behavior can be changedwithout having to step
outside to a lower implementation level - Jakubovic 23

The most predictor of a low-code platform’s success is the
ability to change the system’s behaviour from the deep-
est layers. This would be achieved by introducing macros,
programming fragments intended to generate programs
inside the programming system itself. Why not being in-
spired by traditional languages like Lisp for that? It has
stood the test of time with great honor, thanks also to its
homoiconic nature that enables to write macros easily.

LOGIC + FUNCTIONAL
If we consider AI as an assistant, the programmer double-
checks that what has been generated satisfy explicit and

implicit requirements. Software code is more read than
written and the immense capacity of the generators to
flush out large quantity of code can easily saturate human
scrutiny, urging the necessary of a clear, concise and easy
language for encoding programs. We need to let agents
to express what they want to achieve more than how to
achieve it and remove the need of boilerplate code. Im-
mutability, control over side-effects, unification, pattern-
matching can definitely help on dragging down complex-
ity.

RELATION ALGEBRA
I think one of the main complexity drivers is the
impedance mismatch between query and programming
languages. Those idiosyncratisms are usually mediated
by ORMs frameworks but their slippery slope can trigger
more problems than they solve. Relation algebra is the
basic foundation of database theory and when combined
with programming constrols, it provides a smooth experi-
ence for data-programming.

COMBINATORICS
When programmers encounter new code, they actively
simulate the program’s behaviour in their head and cre-
ate mental models of its structure and logic. This is why
programming is more than a logically demanding task
with significant implications on how people interact with
code. This is confirmed by the use debugging tools, syntax
highlighting, code formatting, visualization applets; are all
there for supporting the brain’s reliance on logical simula-
tions.

The attitude on playing code behaviours confirms that
intelligence can’t be diverted from the ability to search
through a potential infinite combination of concepts and
rules. This is in summary the idea of productivity which
refers to the compositional generation of optimal proposi-
tions from a valid set of grounded statements.

Do automatons excel on that? The building blocks of LRMs
lack of intrinsic search, though efforts have been applied
on forcing recursive reiterations on their conclusions for
minimizing hallucinations. How would be possible to in-
ject intentional search where it is lacking? This is why
combinatorial programming can boost applications’ intel-
ligence by commoditizing optimized solution search.

3

https://bradmcdanel.com/wp-content/uploads/24_SIGCSE_LLM.pdf
https://arxiv.org/abs/2302.10003
https://www.odbms.org/wp-content/uploads/2013/11/031.01-Neward-The-Vietnam-of-Computer-Science-June-2006.pdf
https://doi.org/10.7554/eLife.58906
https://arxiv.org/abs/2411.17708

MAKE EASY THINGS EASILY
…AND COMPLEX THINGS DOABLE.
Not a single artefacts comes out of the vacuum and
Kubrick is not an exception. I’ve been inspired by a multi-
tude of established ideas on re-arranging them and creat-
ing newones. FromProlog I took the variables’ unification,
the automatic pattern matching on method’s activation
and the success/failure assertions for validating method
invocations, typical of logic programming. From Julia I’ve
borrowed the fundamental recursive data structures for
combining choices, named tuples and sequences. From
ASP I’ve taken the stable model semantics for reasoning on
alternative solutions and choices, the alternative values.

A COMBINATORIAL USE CASE
Central to la language is the recursive data type that in-
clude sequences, named tuples and choices:

grocery orange type->fruit price->1.2,
rating->5 origin->italy;spain

Choices are alternative values (or expressions) to say that
the fruit can either be 1st, 2nd, bio or local quality. Named
tuples are key-value pairs and sequences are ordered col-
lections, and any element can be a nested data structure.

Let’s assume we need to create purchase lists with only
one item per type and grouped by origin:

cart Item -|1^Origin,1#Type|
grocery Item type->Type origin->Origin

You need to filter only purchase below 30€:

\ cart Item, grocery Item price->Price,
Tot->(group sum Price),
< Tot 30

and get the best combination of items that maximizes
product’s ratings and minimizes the total cost. View it as
a sort of multi-objective Pareto optimization:

\> cart Item, groupcery Item rating->Rating,
group sum Rating

\< cart Item, grocery Item price->Price,
group sum Price

USER EXPERIENCE
The prototype’s interface resemble a notebook environ-
ment with cells for writing code, for AI prompting and for
visualizing results. While the programgeneration could be
delegated to external LRMs, the program execution is per-
formed locally in the browser. This approach combines the
divide/conquer of notebooks, the immediacy of spread-
sheet applications and the assisted program generation.

PROCESS FLOW
When the user submit the prompt, the web application
(Capriccio) delegate a specialized module (Avro) that aug-
ments the user prompt with Kubrick language reference
documentation and forward the enriched request to theAI
service. The generated code is then executed by the web
application that display the results in the notebook cell.

4

COMPILE-TIMEWORKFLOWS
The glamoured “agentic AI” trend put LRMs in the main
stage of complex programming exploiting their ability to
elaborate decisions based on intricate set of input data.
In the reasoning and acting (ReAct) paradigm the LLM
is called during the transition in a broader state-machine
that describes the the entire process. Basically, the AI tool
is adoptednot for planning the entireworkflowwhere spe-
cializedmodules can be engaged for specific tasks, but for
deciding which action to take at each step of the process.
It is a quite limiting approach that just raises the complex-
ity of the overall solution.

Why not let the AI tools to generate the entire workflow at
once? Attempts in this direction have demonstrated that
it is possible to substantially improve the effectiveness of
AI generators. This achievement reinforces the thesis that
a highly expressive and declarative language like the one
presented in this project can improve the impact of agen-
tic AI.

MCP INTEGRATION
We can inform the generator about available functions
and their interfaces (followingKubrick’s language) and run
the GenAI as an orchestrator andmodel the entire process
in compile-time. Available functions can be those imported
from libraries but also those exposed through model con-
text protocols (MCP), a revisited protocol for service discov-
ery. In this way, the single components can be invoked
by the symbolic runtime that execute the generated code
with more fine-grained control over its execution.

5

https://arxiv.org/abs/2402.01030

	Abstract
	Cognitive Aspects of Programming
	How to reduce complexity
	Uniform experience
	Open authorship
	Self-sustainability
	Logic + functional
	Relation algebra
	Combinatorics

	Make easy things easily
	…and complex things doable.
	A Combinatorial use case
	User experience
	Process flow

	Compile-time Workflows
	MCP integration

